Enhancing Object Detection Techniques Through Transfer Learning and Pre-trained Models

Authors

  • Ashwaq Katham Mtashre College of Health and Medical Technologies Kufa | Al-Furat Al-Awsat Technical University | Iraq , كلية التقنيات الصحية والطبية / كوفة | جامعة الفرات الأوسط التقنية | العراق
  • Dhakaa Mohsin Kareem Technical Institute Suwaira |Middle Technical University | Iraq , معهد الصويرة التقني | الجامعة التقنية الوسطى | العراق
  • Zainab AbdAlAbbas Muhsen Babylon Technical Institute | AL-Furat Al-Awsat University | Iraq , المعهد التقني بابل | جامعة الفرات الأوسط | العراق

DOI:

https://doi.org/10.26389/AJSRP.K270724

Keywords:

pre-trained models, VGG, ResNet, Deep Learning, convolutional neural networks

Abstract

This study aims to enhance object detection systems by comparing pre-trained classification models with custom-trained ones, focusing on task-based deep learning for image recognition. The problem addressed is the challenge of accurately detecting and classifying objects in complex environments where traditional recognition systems may fall short. The proposed solution leverages transfer learning utilizing pre-trained models like ResNet or VGGNet as feature extractors. By exploiting the convolutional layers of these models, the system captures common features for specific detection tasks. Experimental analyses on benchmark datasets confirm the efficacy of this approach, demonstrating improved detection accuracy and efficiency in various scenarios. Specifically, FasterRCNN achieves a mean Average Precision (mAP) of 78% on synthetic datasets and 74% on real datasets at an Intersection over Union (IoU) threshold of 0.5. This indicates FasterRCNN's superior performance in terms of accuracy, making it a strong candidate for applications requiring high detection accuracy.

Author Biographies

  • Ashwaq Katham Mtashre, College of Health and Medical Technologies Kufa | Al-Furat Al-Awsat Technical University | Iraq, كلية التقنيات الصحية والطبية / كوفة | جامعة الفرات الأوسط التقنية | العراق

    College of Health and Medical Technologies Kufa | Al-Furat Al-Awsat Technical University | Iraq

  • Dhakaa Mohsin Kareem, Technical Institute Suwaira |Middle Technical University | Iraq, معهد الصويرة التقني | الجامعة التقنية الوسطى | العراق

    Technical Institute Suwaira |Middle Technical University | Iraq

  • Zainab AbdAlAbbas Muhsen, Babylon Technical Institute | AL-Furat Al-Awsat University | Iraq, المعهد التقني بابل | جامعة الفرات الأوسط | العراق

    Babylon Technical Institute | AL-Furat Al-Awsat University | Iraq

References

Downloads

Published

2024-09-30

Issue

Section

Content

How to Cite

Mtashre, A. K., Kareem, D. M., & Muhsen, Z. A. (2024). Enhancing Object Detection Techniques Through Transfer Learning and Pre-trained Models. Journal of Engineering Sciences and Information Technology, 3(8), 39-45. https://doi.org/10.26389/AJSRP.K270724