Maxwell's Equations Under Lorentz Transformations: Investigating the Spontaneous Emergence of Magnetic Charge and Current Densities
DOI:
https://doi.org/10.26389/AJSRP.K010125Keywords:
Special relativity, Lorentz transformation, Electromagnetic interactions, Particle-theory models, Magnetic monopoles, Higgs bosonAbstract
The quest for magnetic monopoles has captivated theoretical physicists due to their potential to reshape our understanding of electromagnetism. Despite extensive research, definitive mathematical proof of their existence remains elusive. This paper presents a rigorous mathematical framework supporting the existence of magnetic monopoles within the covariant formulation of classical electromagnetism and special relativity. Utilizing tensor calculus and the covariance form of Maxwell's equations, we derive expressions for magnetic charge density and magnetic current density through Lorentz transformations. Our approach emphasizes the expansion of tensorial equations, particularly focusing on the covariant derivatives of the electromagnetic field tensor and its dual. The results demonstrate the recovery of magnetic charge and current densities in Maxwell's equations, providing a theoretical foundation for the existence of magnetic monopoles. A magnetic monopole model is introduced, establishing the relationship between the electric field, the monopole’s magnetic charge, and their dependence on the observer's relative velocity as a direct consequence of the modified Gauss's law for magnetism. This model suggests the existence of dipole bosons—electric or magnetic—which function analogously to the Higgs boson. These dipole bosons are proposed to confer mass, charge, and spin to charged particles, whether they are electric or magnetic in nature.
References
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Arab Institute of Sciences & Research Publishing - AISRP

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.